Synergistic stabilization of nucleic acid assembly by 2'-O,4'-C-methylene-bridged nucleic acid modification and additions of comb-type cationic copolymers.
نویسندگان
چکیده
Stabilization of nucleic acid assemblies, such as duplex and triplex, is quite important for their wide variety of potential applications. Various stabilization methods, including molecular designs of chemically modified nucleotides and hybrid stabilizers, and combinations of different stabilization methods have been developed to increase stability of nucleic acid assemblies. However, combinations of two stabilizing methods have not always yielded desired synergistic effects. In the present study, to propose a strategy for selection of a rational combination of stabilizing methods, we demonstrate synergistic stabilization of triplex by 2'-O,4'-C-methylene-bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide and addition of poly(l-lysine)-graft-dextran copolymer [poly(l-lysine) grafted with hydrophilic dextran side chains]. Each of these methods increased the binding constant for triplex formation by nearly 2 orders of magnitude. However, their kinetic contributions were quite distinct. The copolymer increased the association rate constant, whereas the 2',4'-BNA modification decreased the dissociation rate constant for triplex stabilization. The combination of both stabilizing methods increased the binding constant by nearly 4 orders of magnitude. Kinetic analyses revealed that the successful synergistic stabilization resulted from kinetic complementarity between increased association rate constants by the copolymer and decreased dissociation rate constants by the 2',4'-BNA modification. The stabilizing effect of one stabilization method did not alter that of the other stabilization method. We propose that kinetic analyses of each stabilizing effect permit selection of a rational combination of stabilizing methods for successful synergy in stabilizing nucleic acid assemblies.
منابع مشابه
2'-O,4'-C-methylene bridged nucleic acid modification promotes pyrimidine motif triplex DNA formation at physiological pH: thermodynamic and kinetic studies.
Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in an artificial control of gene expression in vivo. Stabilization of the pyrimidine motif triplex at physiological pH is, therefore, crucial in improving its therapeutic potential. To this end, we have investigated the thermodynamic and kinetic effects of our previously reported chemical modificatio...
متن کاملCellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملDNA assembly and re-assembly activated by cationic comb-type copolymer.
Guanine-rich oligonucleotides, such as TG(4)T and TG(5)T, assemble into a tetramolecular quadruplexes with layers of G-quartets stabilized by coordination to monovalent cations. Association rates of the quadruplexes are extremely slow, likely owing to electrostatic repulsion among the four strands. We have shown that comb-type copolymers with a polycation backbone and abundant hydrophilic graft...
متن کاملActivation of DNA strand exchange by cationic comb-type copolymers: effect of cationic moieties of the copolymers
We have previously reported that poly(l-lysine)-graft-dextran cationic comb-type copolymers accelerate strand exchange reaction between duplex DNA and its complementary single strand by >4 orders of magnitude, while stabilizing duplex. However, the stabilization of the duplex is considered principally unfavourable for the accelerating activity since the strand exchange reaction requires, at lea...
متن کاملEffect of activation factors on adsorption of cationic dye, methylene blue, by activated bentonite
The aim of this investigation was to study the relationship between activation factors and adsorption of cationic dye, methylene blue MB, by activated bentonite. The adsorption index was investigated as a function of acid type, time and temperature. A commercial bentonite was selected as a starting material and the effect of heat treatment on MB adsorption were determined in a batch setup. Thou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 48 15 شماره
صفحات -
تاریخ انتشار 2009